Quasi-Experimental
Designs That Use Both
Control Groups and

Pretests | i

Con-trol {kan-tr5l'): [Middle English comtrollen, from Anglo-Norman con- i
trevoller, from Medieval Latin contrrotulre, to check by duplicate tegis- 1

ter, from contrrotsdus, duplicate register: Latin contr-, cortra- + Latin i

[

rotufus, roll, diminutive of rota, wheel; sce ret- in Indo-Eurcpean g
Roots.] v, tr. con-trolled, con-trol ling, conerols, 1. a. To verify or reg-
ulate {a scientific cxperiment) by conducting a parallel experiment or by
comparing with another standard. b. To verify (an account, for exam- ! f
ple} by using a duplicate register for comparison. 1. 1. a, A standard of ‘
comparison for checking or verifying the results of an experiment.

b. An individual or group used as a standard of comparison in a con- |
trol experiment. i

Pre-test (pre'tédst’): n, 1, a. A preliminary test given ro determine whether soy-
dencs arc sufficiently prepared for a more advanced course of studies,
b. A test taken for practice. 2. The advance testing of something, such
as a questionnaire, a product, ot an idea, v. tr. and intr. pre-tested,
pre-testing, pre-tests (pr-ist.). To subject to or conduct a pretest.

lected welfare recipients with up to 6 weeks of training, followed by subsidized

employment as homemakers and home health aides, To determine if this intet- L
vention improved subsequent carnings, Bell et al. (1925) comparcd results from sl
those who received training with three different nonrandomized control groups:
(1) those who applied to the program but left before being screened for eligibility,
(2) those who applied but were screened out by staff as ineligible, and (3) those

TI-LE‘. HOMEMAKER-Home Health Aide Demonstration Program provided se-
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who applied and were accepted but did not participate in the training.’ Compar-
isons of results between treatment and all three control groups suggested that
training improved subsequent earnings, although the size of the effect depended
on which control group was used. Information about earnings before treatment
was available for all these groups, and Bell et al. (1995) showed that those pretest
differences were unlikely to account for posttest differerices that later emerged,

DESIGNS THAT USE BOTH CONTROL
GROUPS AND PRETESTS

This chaprer focuses on quasi-experimental designs that, like that of Bell et al.
(1925), have both control groups and pretests. The chapter explains how the use
of carefully selected comparison groups facilitates causal inference from quasi-
experiments, but it also argues that such control groups are of minimal advantage
unless they are also accompanied by pretest measures taken on the same outcome
variable as the posttest. Such pretests serve many purposes. They tell us about how
the groups being compared initially differ and so alert us to the higher probabil-
ity that some internal validity threats rather than others may be operating. They
also tell us something about the magnitude of initial group differences on the vari-
able that is usually most highly correlated with the outcome. The strong assump-
tion is that the smaller the difference on the pretest, the less is the likelihood of
strong initial selection biases on that pretest operating, though, unlike with ran-
dom assignment, there can be no assumption that unmeasured variables at pretest
are unrelated to outcome, And finally, having pretest measures helps enormously
with the statistical analysis, especially if the reliability of these measures is known,
No single variable will usually do as well as the pretest for these purposes. All
these reasons explain why we like pretests and control groups in the widely im-
plementable quasi-experimental designs that we cover in this chapter. Table 5.1
summarizes the quasi-experimental designs we consider.

The Untreated Control Group Design With Dependent
Pretest and Posttest Samples

Frequently called the nonequivalent comparison group design, this may be the
maost common of all quasi-experiments. The initial variant we consider uses a
treatment group and an untreated comparison group, with both pretest and

1. This atudy also included & randomived conteal, but that is not relevant for present purposes.
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TABLE 5.1 Quasi-Experimental Designs That Use Comparison Groups and Pretasts

Untreated Control Group Design with Dependent Pretest and Posttest Samples
NR O X 0

NR O, Qs
Untreated Control Group Design with Dependent Pretest and Posttest Samples Using a Double
Pratest

NR O, O X0,

NE O, O, O,

Untreated Control Group Design with Dependent Fretest and Postiest Samples Using Switching
Replications

NR O X0 O

NE  Op  Op X Oy

Untreated Control Group Design with Dependent Pretest and Posttest Samples Using
Reversed-Treatment Control Group

NR O X O

NR O, X0,

Cohort Controf Group Design

NR oy

NR X 0

Cohort Controf Group Design with Pretest from Each Cohort
NROOOp O

NR 07 X Oy

posttest data gathered on the same units.” The latter is what makes the dependent
samples feature. It is diagrammed:

NR O, X0,

NR O, O,

2. A variation is the regression point digplacement design, It uses a postiest, a predictor of posttest scores thut is taken
prior wo treanment {the predictur may be 4 prevest bur often iz net), and one treatment unit buc many control units;
each unit eontributes 8 group mean but not daw on individuals within groups (Campbel! & Russo, 1999 Trochim 8¢
Campbell, 1996). The design can sometires be useful when a single pretest {ar other predictor) and postiest are
available from so few treatment units that no other dexign is feasible, "I'his might occur with administrative records in
which data are not reported in a disaggregated way and many conrrol unirs are available and in clinical contexts in
which 1 treatrmient is given to a single client bur records on many control clients are available.
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‘The joint use of a pretest and a comparison group makes it easier to examine cer-
tain threats to validity. Becanse the groups are nonequivalent by definition, selec-
tion bias is presumed to be present. The pretest allows exploration of the possible
size and direction of that bias.? For example, Carter, Winkler, and Biddle (1987)
evaluated the effects of the National Institutes of Health {(NIH) Research Career
Development Award (RCDA), a program designed to improve the research careers
of promising scientists. They found that those who received RCDAs did better
than those not receiving them, but those who received them had also done better
at pretest by a similar amount. So the final difference may have been due more to
initial selection bias than to the effects of RCDA. The use of a pretest also allows
examination of the nature of attrition, allowing researchers to describe group dif-
ferences between who does and does not remain in a study. However, the extent
to which the pretest can render selection implausible depends on the size of any
selection bias and the role of any unmeasured variables that cause selection and
are correlated with the outcome. The absence of pretest differences in a quasi-
experiment is never proof that selection bias is absent,

When pretest differences do exist, the possibility increases that selection will
combing with other threats additively or interactively, For example, selection-
maturation may arise if respondents in one group are growing more experienced,
tired, or bored than respondents in another group. To illustrate, suppose a new
practice is introduced in a setting in which the average pretest level of perform-
ance exceeds the average pretest level in the control setting, If the treatment im-
proves outcome, the posttest difference between groups might be even larger than
the pretest difference. But this pattern might also oceur if treatment gronp partic-
ipants were, say, brighter on average and used their higher aptitude to learn at a
faster rate than the controls—the rich get richer, so to speak,

A selection-instrumentation threat can oceur when nonequivalent groups be-
gin at different points on the pretest. On many scales, the intervals are unequal,
and change is easier to detect at some points than at others {e.g., in its middle
rather than at its extremes). On normed achievement test scores, for instance, get-
ting a single item cotrect can have greater implications for percentile rankings at
the extremes of a distribution than at the mean. Thus one item translates into dif-
ferent amounts of percentile change depending on the scale position of the re-
spondent. Selection-instrumentation problems are probably more acute (1) the
greater the initial nonequivalence between groups, (2} the greater the pretest-
posttest change, and (3) the closer any group means are to one end of the scale, so
that ceiling or floor effects occur. Sometimes, clues to the presence of such prob-
lems are apparent from inspecting pretest and posttest frequency distributions
within each group to see if they are skewed or when group means and variances

3. Thiz is typically done by sccing if groups differ significantly at precest, but it might be better done using
squivalency testing methads (Reicharde & Gollob, 1997; Rogers, Howard, & Vessey, 1993), The latrer can be
more senditive to detecting prevest differences, although failure to find differences does not prove that groups are
equal at pretest because groups may still differ on uncbserved variables.
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are correlated. Sometimes raw data can be rescaled to reduce such problems,
whereas at other times a careful choice must be made to use groups that score
close to each other at the middle of a scale.

A third example is selection-regression. In the 1969 Head Start quasi-
experiment described in the previous chapter (Cicerelli 8 Associates, 1969), the
treatment group of children who attended Head Start was potentially from a dif-
ferent population than the control group children, who did not attend. Recog-
nizing this possibility, the Head Start researchers selected as matched controls
only those controls who had the same sex, race, and kindergarten attendance
status as the Head Start children, Bur this led to the problem of differential re-
gression described in the last chaprer,

A fourth problem is selection-history (or local history), the possibility that an
event (or events) occurred between pretest and posttest that affected one group
more than another. For example, a review of federal programs to improve preg-
nancy outcome (Shadish & Reis, 1984) found that many studies nsed the pretest-
posttest comparison group design, and results suggested that such programs im-
proved pregnancy outcome, But mothers who were eligible for these programs
also were cligible for other programs that can improve pregnancy outcome, in-
cluding food stamps and various health care programs. So it was impossible to
know with confidence whether improvements in pregnancy outcome were caused
by treatment or by these other programs.

How the Plausibility of Threats Depends Partly on the Observed
Pattern of Outcomes

This list of relevant internal validity threats is daunting. However, the plausibility
of a threat is always contextually dependent on the joint characteristics of the de-
sign, on extrastudy knowledge about the threats, and on the pattern of observed
study results. Therefore, possible threats to validity are not always plausible ones.
For example, maturation processes in children that cause increased academic
achievement are not plausible explanations for decreased achievement. To make
this point more generally, we now outline five outcome patterns that are observed
with the pretest-posttest comparison group design and show how they render
threats to validity more or less plausible. We focus mostly on selection-maturation
but occasionally comment on other threats as well.

Outcome 1: Both Groups Grow Apart in the Same Direction. A common
pattern of selection-marration occurs when initially nonequivalent groups grow
apart at different average rates in the same direction (Figure 5.1). This pattern
has been called a fan-spread model of maturation because the groups grow apart
over time like ribs in a fan, from the center out to the edges, Standardizing scores
makes the fan spread disappear because the fan spread is a function of measured
variances growing systematically over time, and standardization involves dividing
scores by their variation and so purting scores at each time point on the same
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Traatment

//cE(/

FIGURE 5.1 First outcome of the no-treatment control group design with pretest and posttest

scale instead of on different scales. This patrern is consistent with treatment
effects, but can alternative interpretations be identified and ruled out?

Ralston, Anthony, and Gustafson (1985) examined the effects of flexible
working hours (flextime) on productivity in two state government agencies, In the
agency without flextime, productivity was initially lower and increased slightly
over time; in the agency with flextime, it was initially higher but increased at a
faster rate. This pattern is common in quasi-experiments, particularly when re-
spondents self-select into condition. But even when administrators assign respon-
dents, treatments are often made available to the especially meritorious, those
most keen to improve, or to the more able or better networked, and such persons
are also likely to improve at a faster rate for reasons that have nothing to do with
freatment,

Several analytic clues can suggest whether nonequivalent gronps are maturing at
different rates. If group mean differences are a result of this selection-maturation
threat, then differential growth between groups should also be occurring within
groups, This could be detected by a within-group analysis in which higher perform-
ing membets of the group with the higher pretest mean should be growing faster than
lower performing membets of that same group. This selection-maturation threat is
also often associated with posttest within-group variances that are greater than the
corresponding pretest variances. It may also help to plot pretest scores against the hy-
pothesized maturational variable (e.g., age or years of experience) for the experi-
mental and control groups separately. If the regression lines differ, different growth
rates are likely. Such group differences in slope cannot be due to treatment because
only the pretest scores have been analyzed.

Nothing makes initial group difference increase linearly; growth can be linear
in one condition but quadratic in another, However, in our experience differential
maturation of the fan-spread type is commonplace, In education, for example, chil-
dren who show higher achievement often grow steadily ahead of their lower scor-
ing contemporaries on the original metrics. We suspect that other longitudinal data
sets will also show the fan-spread type of differential maturation. Nonetheless,
some theoretical formulations predict a different selection-maruration pattern,
even in some areas in education. For instance, Piaget’s theory predicts sharp dis-
continuities in growth differences as some children suddenly acquire a concept and
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FIGURE 5.2 Second outcome of the no-treatment control group design with pretest and
posttast

others do not. So each study using the basic design must present and justify its own
assumptions about maturational differences. Sometimes pretest data will play an
important role in this. Sometimes data from other longitudinal samples will serve
a similar function, as with our assertion that a fan-spread model often fits longitu-
dinal data on academic achievement, But at other times, theoretical speculation is
all that can be presented.

Outcome 2: No Change in the Control Group. Narayanan and Nath (1982)
used this design to examine how flextime influenced an existing unit of
employees compared with another unit in the same company. Results showed
improved supervisor-subordinate relations in the flextime group but no changes
in the controls, as Figure 5.2 simulates.

When the controls do not change, the critic must explain why spontaneons
growth occurred only in the treatment group. It is often easicr to think about why
both groups mature at different rates in the same direction or why neither group
should be changing over time than to think about why one group improves
whereas the other does not. Sometimes, within-group analyses can shed light on
such between-group threats. For example, if the treatment group was maturing
more quickly because the participants were older than those in the control group,
then the data could be split by age. If treatment group participants continued to
improve no matter what their age, this makes a selection-maruration hypothesis
less plausible if it postulates that there should be growth in one group but not the
other. Yet when all is said and done, not a lot of reliance can be placed on this par-
ticular pattern of differential change. The reason is that it is not unknown for one
group to improve and another not to change. Moreover, the pattern of differen-
tial change we discussed as more prevalent is only more so in general, Yet each
study is highly contextual, and generalities may not apply.

Outcome 3: Initial Pretest Differences Favoring the Treatment Group That
Diminish Over Time. Figure 5.3 describes the scenario by which the pretest
superiority of a treatment group is diminished or eliminated at posttest. This
outcome occurred in a sample of Black third, fourth, and fifth graders in a study
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Control

FIGURE 3.3 Third outcome of the ro-treatment control group design with pretest and posttest

of the effects of school integration on academic self-concept {Weber, Cook, &
Campbell, 1971}, At pretest, Black children attending all-Black schools had higher
academic self-concept than did Black children attending integrated schoals, After
formal school integration occurred, the initial difference was no longer found.

Some of the internal validity threats described for Figures 5.1 and 5.2 are also
relevant to Figure 5.3. However, selection-maturation is less plausible, for it is rare
that those who start off further ahead fall back later on or that those who start
further behind subsequently catch up. T can happen, of course. For example, if in
an educational context one group were slightly older than another but less intel-
ligent, the older group might be further ahead at the earlier peint due to their age
advantage but lose this advantage as the younger but smarter group comes to per-
form better, But such phenomena are rare, and in the Weber et al. (1971) exam-
ple, the two groups were equivalent in age. Thus the argument is that no presently
known maturation process can account for the pattern of results in Figure 5.3, al-
though some such process might be found in the future.

Quicome 4: Initial Pretest Differences Favoring the Control Group That
Diminish Qver Time, In this case, as in Figure 5.3, the experimental-control
difference is greater at pretest than at posttest, but now the experimental group
initially underperforms the controls {Figure 5.4). This is the outcome desired when
schools introduce compensatory inputs to increase the performance of the
disadvantaged or when a firm makes changes to try to improve a unit’s poor
performance, Keller and Holland (1981) found this pattern when they assessed
the impact of a job change on employee performance, innovativeness, satisfaction,
and integration in three research and development organizations. Employees who
were promoted or assigned to a different job were the treatment group, and all
others were controls, Qutcorries were measured twice, 1 year apart. Although this
work had no explicit compensatory focus, the data fit the pattern under
discussion, and those with the job change showed improved outcomes, whereas
the outcomes for others stayed the same. ,

The outcome is subject to typical scaling (i.e., selection-instrumentation) and
local history (i.c., selection-history) threats. But two special elemnents stand out,
First, if the company changed the jobs of those employees whose performance was
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Control
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FIGURE 5.4 Fourth outcome of the no-treatment contral group design with pretest and
posttest

particularly poor at pretest, the outcome for those employees should regress up-
ward at posttest, an outcome that could produce the results in Figure 5.4. If the
treatment-control differences in Keller and Holland (1981) were temporally sta-
ble, something we could not tell with this design (but could i two pretests were
used), then regression would not be a threat, In nonequivalent control group de-
signs, therefore, it is imperative to explore the reasons for injtial group differences,
including why some groups assign themselves or are assigned to one treatment
rather than to another.

The second special element of this design is that the outcome in Figure 5.4 rules
out selection-maturation of the fan-spread type—or shows that the treatment over-
came such an effect if there were one. However, other selection-maturation pat-
terns could be invoked. In Keller and Holland (1981), for example, the job chang-
ers may have been junior staff members in the organization, accounting for their
lower pretest scores, but they may also have been particularly open to learning
from new experiences, making their performance rise disproportionately quickly,
Data on age and time in the organization would have to be analyzed for this pos-
sibility. In general, this outcome is often interpretable causally. But it has to be ex-
plored seriously in any single study in case its specifics set up complex selection-
maturation patterns like those just elaborated.

Outcome 5: Ouicomes That Cross Quver in the Direction of Relationships.
In the hypothetical outcome of Figure 5.5, the trend lines cross over and the means
are reliably different in one direction at pretest and in the opposite direction at
posttest. This outcome is particularly amenable to causal interpretation. First, the
plausibility of selection-instrumentation is reduced, for no simple data transfor-
mation can remove the interaction. For example, a ceiling effect cannot explain
how the lower-scoring group came to draw ahead of a group that initially scored
higher than it did. A convincing scaling artifact would have to postulate thar the
posttest mean of the treatment group is inflated because the interval properties of
the test make change easier at points on the scale that are further away from its
mean. However, this explains the exacerbation of a true effect and not the creation
of a totally artifactual one.
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/ Control

FIGURE 5.5 Fifth outcome of the no-treatment control group design with pretest and posttest

Second, selection-maturation threats are less likely with Figure 5.5, for
crossover interaction maturation patterns are not widely expected, although they
do occur, An example of the pattern in Figure 5.5 is Cook et al.’s (1975) reanaly-
sis of Educational Testing Service (ET5) data on the effectiveness of Sesame Street.
They found that children who were encouraged to view the show knew reliably
less at pretest than children who were not encouraged to watch but that they knew
reliably more than the control group at posttest. But were the encouraged children
younger and brighter, thus scoring lower than controls at the pretest but changing
more over time because of their greater ability? Fortunately, data indicated that
the encouraged and nonencouraged groups did not differ in age or on several
pretest measures of ability, reducing the plausibility of this threat.

Third, the outcome in Figure 5.5 renders a regression threat unlikely, Greene
and Podsakoff (1978) found the depicted crossover when they examined how re-
moving a pay incentive plan affected employee satisfaction in a paper mill. The
employees were divided into high, middle, and low performers, and satisfaction
was measured before and after removal of the pay incentive. Following removal,
the high performers’ satisfaction decreased reliably, that of the low performers in-
creased, and that of the midlevel performers did not change. These slope differ-
ences might be due to regression if all three groups converged on the same grand
mean (similar to Figure 5.4). But statistical regression cannot explain why the low
performers reliably surpassed the high performers at posttest, though tegression
may have inflated treatment estimates.

Unfortunately, any attempt to set up a design to achieve the outcome shown in
Figure 5.3 involves considerable risk. One reason is that the power to detect a sta-
tistically reliable interaction is low (Aiken & West, 1991). So such studies must be
designed carefully. This is especially true when a fan-spread process such as that
shown in Figuare 5.2 is expected, for then a no-difference finding would leave it un-
clear whether the treatment had no effect or whether two countervailing forces (the

treatment and fan-spread maturation) had canceled each other. Even if there were
a difference in slopes, it would probably take the form of Figure 5.4, not Figure
5.5, and Figure 5.4 is less interpretable. So researchers should not rely on design-
ing research to get the outcome in Figure 5.5. Instead, steps should be taken to add
stronger design controls to the basic pretest-posttest design with control group.
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Ways to Improve the Untreated Control Group Desigh With
Dependent Pretest and Posttest Samples

As with the designs in the previous chapter, this basic design can be improved
substantially by adding thoughtfully chosen design features to address threats to
validity that are plausible in the context of the experiment. Examples include the
following.

Using a Double Pretest. Here, the same pretest is administered at two different
time points, preferably with the same time delay as between the second pretest
and the posttest. The design is diagrammed as:

NR 0O 0, X 0O

NR O, 0, 0,

The double pretest allows the researcher to understand possible biases in the main
treatment analysis—if “treatment effects” emerge in the analysis of O; to O, sim-
ilar biases may exist in the analysis from O; to ;. Wortman, Reichardt, and St.
Pierre (1978) used this design to study how the Alum Rock educational voucher ex-
periment affected reading test scores. In this program, parents selected a local school
for their child and received a voucher equal to the cost of education at that school.
The aim was to foster competition between schools in the system. Inicial data analy-
sis by others had claimed that vouchers decreased academic performance, but Wort-
man and colleagues doubted the conclusion that had been deawn. So they followed
a group of students through the first to the third grades in both voucher and non-
voucher schools and reanalyzed test scores using a double pretest. Furthermore, they
divided the voucher schools into those with and without traditional voucher pro-
grams. The additional pretest allowed them to contrast pretreatment growth rates
in reading (between Oy and O,) with posttest change in rates (between Oy and O5),
and, because of this, the decrease in reading previously attributed to voucher schools
was then attributed only to the nontraditional voucher group. The traditional
voucher and nonvoucher groups showed no differential effect that could not be ex-
plained by the continuation of the same maturation rates that had previously char-
acterized the traditional and voucher control schools.

The double pretest permits assessment of a selection-maturation threat on the
assumption that the rates between O, and O, will continue between O, and O;.
That assumption is testable only for the untreated group, Moreover, the within-
group growth rates will be fallibly estimated, given measurement error; and in-
strumentation shifts could make measured growth between O; and O, unlike that
batween O, and Q. So the double pretest design with nonequivalent groups is
not perfect. Yet the second pretest can help considerably in assessing the plausi-
bility of selection-maturation by describing the pre-treatment growth ditferences.
The double pretest also helps reveal regression effects if the O, observation in ei-
ther group is atypically low or high compared with O;. It further helps estimate
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more precisely the correlation between observations at different times, something
of great value in the statistical analysis. Without the extra time point, the correla-
tion between O, and O; in the treated group gives an unclear estimate of what
the correlation would have been in the absence of a treatment.

Why are multiple pretests not used more often? Ignorance is surely one rea-
son, but another reason is that it is sometimes infeasible. Often one is lucky to be
able to delay treatment long enough to obtain a single pretest, let alone two, and
let alone being able to space the pretests with the same time interval between
pretest and posttest. Sometimes, archives will make possible a second or even
more pretests, thus moving toward an even more powerful time series design. In
addition, persons responsible for authorizing research expenditures are sometimes
loath to see money spent for design elements other than postitest measures. Con-
vineing them about the value of pretests and conventional control groups is hard
enough, Convincing them of the value of double pretests can be even harder!
Nonetheless, whenever the archival system, time frame, resources, and politics
permit, the same pretest should be administered twice prior to treatment.

Using Switching Replications, With switching replications, the ressarcher
administers treatment at a later date to the group that initially served as a no-
treatment control. The resulting design is diagrammed as:

NR 0, X 0, O;

NR O, 0, X O

Besadur, Graen, and Scandura (1986) used a version of this design to study how
training affected engineers’ attitudes toward divergent thinking in solving prob-
lems, Measurement was taken prior to training, following the training of one
group of engineers, and then following the training of a second nonequivalent
group. The latter group served as controls in the first phase of the study, whereas
the roles were switched in the second phase. However, the second phase is not an
exact replication. The context surrounding the second treatrnent is different from
the first, both historically and because the treatment has been removed from the
first group, Even if the treatment was not removed, it is assumed to have no cur-
rent impact. (However, the design is still useful even if the initial treatment con-
tinues to have an impact, especially if the control group catches up to the treat-
ment group once the control group receives treatment.) Given the contextual
differences between the first and second treatment, the second introduction of the
treatment is a modified replication, probing both internal validity and an external
validity issue of whether this new context changes the treatment effect.

The design can be extended to more groups than two. When it is, it is some-
times possible to assign groups at random to the particular time at which they start
treatment, because by defimtion there must be many consecutively staggered times
available if the design is to be implemented with many groups, This random com-
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ponent can help strengthen inferences, the more so when many groups at many
time points are available. But even without the random assignment of treatments
to time intervals, the analytic possibilities are productively expanded when more
groups and time points are in the design (e.g., Koehler & Levin, 1998),

The major limitations of this design follow from the fact that later instances
of groups serving as controls entail either {1) keeping the same treatment in place
but presuming it to have no long-term discontinuous effects in the same direction
as the treatment later applied to the initial controls or (2) removing the treatment
from the original treatment group. This potentially sets up processes of compen-
satory rivalry and the like that must be thoroughly described, measured, and used
in the analysis. Otherwise, the switching replications design is strong, Only a pat-
tern of historical changes that mimics the time sequence of the treatment intro-
ductions can serve as an alternative interpretation,

Using a Reversed-Treatment Control Group. We diagram this version of the
design as:

NR O, X, 0

NR O, X. O,

where X, represents a treatment expected to produce an effect in one direction
and X. represents a conceptually opposite treatment expected to reverse the ef-
fect. Hackman, Pearce, and Wolfe (1978) used the design to investigate how
changes in the motivational properties of jobs affect worker atticudes and behay-
iors. As a result of a technological innovation, clerical jobs in a bank were changed
to make the work on some units more complex and challenging (X, ) but to make
work on other units less so (X..), These changes were made without the company
personnel being told of their possible motivational consequences, and measures of
job characteristics, employee attitudes, and work behaviors were taken before and
after the jobs were redesigned. If treatment X, improved the scores of the treat-
ment group, and if treatment X _ decreased the scores of the comparison group, a
statistical interaction should result, suggesting a treatment effect.

The reversed-treatment design can have a special construct validity advan-
tage. The causal construct must be rigorously specified and manipulated to create
a sensitive test in which one version of the cause {job enrichment} affects one
group one way, whereas its conceptual opposite (job impoverishment) affects an-
other group the opposite way. To understand this better, consider what would
have happened had Hackman et al. (1978} uscd an enriched-job group only and
no-treatment controls. A steeper pretest-posttest slope in the enriched condition
could then be attributed to either the job changes or to respondents feeling spe-
cially treated or guessing the hypothesis. The plausibility of such alernatives is
lessened in this design if the expected pretest-posttest decrease in job satisfaction
is found in the reversed-treatment group because awareness of being in research
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is typically thought to elicit socially desirable responses. To explain both an in-
crease in the enriched group and a decrease in the reversed group, each set of re-
spondents would have to guess the hypothesis and want to corroborate it in their
own different way.

Interpretation of this design depends on producing two effects with opposite
signs, It therefore assumes that little historical or motivational change would oth-
erwise be taking place, When change is differential across treatments but in the
same direction, results are less interpretable, because their relationship to a no-
treatment control group is unknown. Adding such a control is helpful and should
be done when it is feasible. Also in many contexts, ethical and practical consider-
ations prevent using a reversed treatment. Most treatments have ameliorative and
prosocial goals, but a conceptually opposite treatment might be harmful. However,
that is not clearly the case with Hackman et al. (1978). Who is to say whether it is
more beneficial to have one’s job made more or less complex than it used to be?

Direct Measurement of Threats to Validity, These measurements allow the
researcher to diagnose the possible presence of threats to validity. In
Narayanan and Nath (1982), flextime was initiated in one unit of a company
while another served as a no-treatment control, However, a history threat conld
be posed if supervisory practices changed in one group but not the other during
the study. To explore this threat, Narayanan and Nath measured such changes
and found none. Of course, this is only one example of history, and many
others could be discovered, so researchers have to be vigilant lest finding that
one study-specific threat is implausible lulls them into believing that all threats
are implausible. Each individual threat has to be conceptualized, validly
measured, and validly analyzed, making direct measurement of threats difficult,
Still, measuring threats can facilitate later statistical analysis by allowing
alternative interpretations to be built into whatever analyses are used to deal
with initial group nonequivalence.

Matching Through Cohort Controls

Many institutions experience regular turnover as one group “graduates™ to an-
other level and their place is taken by another group. Schools are an obvious ex-
ample, as most children are promoted from one grade to the next each year. Other
examples include businesses in which one group of trainees follows another, fam-
ilies in which one sibling follows another, and prisons in which one group of in-
mates follows another. The term cohort designates the successive groups that go
through processes such as these.* Cohorts are particularly useful as control groups

4. The term cubort is used in some other areas (a.g., developmental and lengirudinal studies) to refer to any group
that is repeatedly measured gver time, & very different use from the present one.
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if (1) one cohort experiences a given treatment and earlier or later cohorts do not;
{2) cohorts differ in only minor ways from their contiguous cohorts; (3) organi-
zations insist that a treatment be given to everybody, thus prectuding simultane-
ous controls and making possible only historical controls; and (4) an organiza-
tion’s archival records can be used for constructing and then comparing cohorts,

The crucial assumption with cohorts is thar selection differences are smaller
berween cohorts than would be the case between noncohort comparison groups.
However, this assumption must be probed in cach study through, for example,
analyses of background characteristics presumed to correlate with outcomes,
Even then, presumed comparabilicy will never be as high with cohorts as with ran-
dom assignment. Further, a review of behavioral genetics research found that, in
the area of intellectual performance, environmental differences in the microworlds
that siblings live in or create for themselves make two children from the same fam-
ily as different from one another as are children paired randomly from the popu-
lation (Plomin & Daniels, 1987), If this conclusion is true and generalizable to
nonintellecmal domains, it would seriously undermine the case for assigning spe-
cial status to siblings as cohort controls. Yet many economists include sibling con-
trol designs among their preferred armamentarium for studying the effects of ex-
ternal variables on labor force participation or educational attainment (Aronson,
1998; Ashenfelter & Krueger, 1994; Currie & Duncan, 1995, 1999; Duncan,
Yeung, Brooks-Gunn, & Smith, 1998; Geronimus 8 Korenman, 1992).

An example of the use of sibling controls is provided by Minton (1975). She
examined how the first season of Sesame Street affected Metropolitan Readiness
Test (MRT) scores of a heterogeneous sample of kindergarten children. $he lo-
cated a kindergarten in which the test was administered at the end of the child’s
first year. For a control group, she used MRT scores of the children’s older sib-
lings, who had attended the same kindergarten before Sesame Street began. So she
had the scores from a time at which those siblings were at the same age and mat-
urational stage as their siblings were during the run of Sesgme Srreer. The design
is diagrammed here; the dotted line {.......) between nonequivalent groups indicates
a cohort control. We introduce a ¢ohort design without pretest first and then add
a pretest in the next section. The numerical subscripts refer to time of measure-
ment, with the effect assessed by contrasting O, to Q4. The design clearly shows
that the older sibling group is being used as the same-age, same-maturational-
status, reduced-selection control group.

NR O,

Despite similarities between cohorts in maturation status and other family-
based variables, to contrast just these two observations provides a weak test of the
causal hypothesis. First, a selection problem remains because older siblings are
more likely to be first-borns and ficst-borns tend to outperform later siblings on
cognitive achievement tests (Zajonc & Markus, 1975). One way to reduce this
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threat is to analyze the data separately by birth order of the older child, because
the birth-order effect should dampen as the birth order of the older sibling in-
creases (Zajone & Markus, 1975). The design is also weak with respect to history,
for older and younger siblings could have experienced differential events other
than watching Sesame Street that affected knowledge levels, One way to explore
this threat is to break cohorts down® into those whose kindergarten experience
was separated by 1, 2, 3, or more years from their siblings 1o see if the greater
learning of the younger group held over the different sets of historical cvents that
these cohorts presumably experienced. But even so, this procedure would still not
control for those historical events that took place during the same year that
Sesame Street was introduced. So a berter solution would be to repeat the experi-
ment in different schools in different years. If the effect occurred each time, any
historical event or events that masqueraded as treatment effects would have to
temporally mimic the introduction of the treatment from school to school across
different years. As it turned out, not even this last possibility was feasible with
Sesame Street, given its great initial popularity in private homes, Hence no school
group with minimal exposure would have been possible,

Direct measurement can sometimes help assess selection and history. For in-
stance, Devine, O'Connor, Cook, and Curtin- (1320) conducted a quasi-
experiment to examine how a psychoeducational care workshop influenced
nurses’ care of cholecystectomy (gallbladder) surgery patients and their recovery
from surgery. Reports were collected from all relevant patients in a single hospi-
tal for 7 months before trearment and on another group at the same hospital for
6 months after treatment, thus creating pretreatment and posttreatment cohorts.
An analysis of many background characteristics and hospital records revealed no
differences between the two cohorts, minimizing the selection threat for the vari-
ables examined (but not for unmeasured attributes). Still, it would have been bet-
ter if circumstances had allowed collecting both pretest and posttest data for a cal-
endar year each instead of for 7 and € months, respectively, because the data
collection procedure actually implemented is confounded with seasons. Regard-
ing history, the research staff were in the target hospital most days and detected
no major irrelevant changes that might have influenced recovery from surgery.
This provides no guarantee, of course, and design modifications are better than
measurement for ruling out this internal validity threat. $o data were also col-
lected from a nearby control hospital that was owned by the same corporation and

§. Such paeritioning needs to be done with great caution, especially if it creates more extremne and less excreme
groups, Our previous work gave an example of paritioning from the Minton study in which the treatment group
was partitioned into four geoups by level of viewing of Sesarme Street, The sibling cohorts were then matched to the
same particion, However, Mark {1986, p. 60) identified a plausible regression artifact thae may have resulred from
this partitioning: “Younger siblings who sclf-sclect into heavy ‘Sesame Streer’ viewership are likely to e highly
interested in learning, while those who self-selest into light viewceship are not, Given the less than perfect
relationship between sibling's academic skills, we would expect that the older siblings would display less extreme
behavior. The result of this regression effect would be a statisrical interaction of the sorc presented by Cook and
Camphell (1979, p. 129) as an ‘interpretable ouecome,™
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had some of the same physicians, That control also supported the conclusion that | &
the treatment effect was not due to history. What we see with this last point is im- il
portant, with the cohort design being supplemented by a design feature such as a i
no-treatment control group. That kind of design improvement is what we now 2l
turn to, adding even more design features to improve causal inference,

Improving Cohort Controls by Adding Pretests

In a sdy comparing the effectiveness of regular teachers and outside contractors '
hired to stimulate children’s achievement, Saretsky (1972) noted that the teachers ‘
made special efforts and performed better than would have been expected given
their previous years’ performances, He attributed this compensatory rivalry to
teacher fear of losing their jobs if contractors outperformed them. Assume for
pedagogic purposes that he compared the average gain in classes taught by teach-
ers during the study period with the average gain from the same classes taught by !
the same teachers in previous years. The resulting design would be of the follow- L
ing form, with O, and O; representing beginning and end of year scores for the
earlier cohort, who could not have been influenced by teacher fears, and O; and
O, representing scores for the later cohort that might have been so influenced. The ‘
null hypothesis is that the change in one cohort equals that in the other This de- I
sign can be extended back over time to include multiple “control” cohorts rather
than just one. Indeed, Saretsky reported data for 2 preexperimental years. In prin- | i
ciple, if treavment is ongoing, the design could also be extended forward for sev- |
eral years to get multiple estimates of effects. !

NR O, 0,

--------------- LR R Y T T T PP P P

NR 0; X O, i!

As depicted, the design is similar to the basic nonequivalent control group de-
sign with pretest and posttest. The major differences are that measurement oceurs T
at an earlier time period in the control group and that ¢ohorts are assumed to be i
less nonequivalent than most other nonmatched groups would be. This last point
can be explored by comparing cohort pretest means, one of the major advantages ‘
of including pretests in cohort design. The pretest also increases statistical power i
by allowing use of within-subject error terms. It enables better assessment of mat- o
uration and regression, and it enters into better (but still imperfect) statistical ad- ' “
justment for group nonequivalence.

History is a salient internal validity threat in this design-—it can involve any
event correlated with the outcome that appears only during the 0,-Q, period,
even if there is a series of cohort control periods, Only if a nonequivalent control :
group is added to the design and measured at exactly the same time points as the ]
treatment cohorts can we hope to address history. Sometimes the design can be
strengthened by adding nonequivalent dependent variables if these are appropri-
ate for the topic under investigation.
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A variant of this design is what Campbell and Stanley (1963) called the re-
current institutional cycle design, With access to school records, or having at least
2 years to do a study with otiginal data collection, the design is:

NR X O

It involves the three cohorts entering, say, the second grade in 3 consecutive years.
The first receives the treatment and a postiest, the second the treatment with both
pretest and posttest, and the third no treatment and only one assessment. Note
that O; and O; might not be simultaneously observed because one might be at the
end of a school year and the other at the beginning of the next. This cycle is re-
peated again with O; and O,. A treatment main effect is suggested by a certain
pattern of results—that is, if O; and O; are, say, higher than O, and Qg if O,
does not differ from Oy; and if O; does not differ from O;. A partial control for
history is provided if, in addition to O being greater than O;, O, surpasses O,
and Q3 surpasses O,. Then there is presumptive evidence that the treatment could
have been effective at two different times, though it is also possible for two sepa-
rate historical forces to have operated or for one historical force to have reoe-
curred. But still, any single history alternative would have to repeat to explain
both Oy = O, and Q4 > O,. Selection is also reduced in this version of a cohort
design when the same persons are involved in the O,~0; comparison.

Another threat, testing, is possible because some comparisons involve con-
trasting a first testing with a second testing (O, to O3). Hence, Campbell and
Stanley (1963) recommended splitting the group that is both pretested and
posttested into random halves, one of which receives a pretest but the other of
which does not. A reliable difference between these two groups at posttest might
be due to testing; the lack of such differences would suggest that testing effects are
not a problem, Finally, because causal interpretation depends on a complex pat-
tern of outcomes in which three contrasts involve Qs, a change in elevation of O,
would have crucial implications. Hence the design should be used only with reli-
able measures and large samples. '

Improving Cohort Designs With a Nonequivalent
Dependent Variable

Minton {1975) used a nonequivalent dependent variable to improve her study of
how the first season of Sesame Street affected kindergarten children’s learning, She
showed, for those who watched Sesame Street, that their knowledge of letters that
were taught on Sesame Street improved significantly more than did their knowledge
of letters that were not taught. This outcome helped address maturation threats to
validity, because children typically grow in their knowledge of lerters of the alpha-



DESIGNS THAT COMBINE MANY DESIGN ELEMENTS

bet over time as a result of many influences, including their own cognitive develop-
ment. If only maturation explained the results, then we would expect no difference
between knowledge of letters that were taught versus those that were not.

DESIGNS THAT COMBINE MANY DESIGN ELEMENTS

Throughout this chapter we have emphasized the value of adding design ele-
ments to aid causal inference. In this section, we describe three examples of de-

signs that use many elements, examples that serve to clarify and extend the un--

derlying rationale.

Untreated Matched Controls With Multiple Pretests and
Posttests, Nonequivalent Dependent Variables, and
Removed and Repeated Treatments

In an exemplar of good quasi-experimental design, Reynolds and West (1987) as-
sessed the effects of Arizona’s “Ask for the Sale” campaign to sell lottery tickets.
Participating stores selling lottery tickets agreed to post a sign reading, “Did we
ask you if you want a Lottery ticket? If not, you get one free,” and they also agreed
to give a free ticket to those customers who were not asked if they wanted one but
who then requested one. Because participation was voluniary, the resulting non-
equivalent control group design was supplemented in four ways. First, the authors
matched treatment stores to control stores from the same chain (and when possi-
ble, from the same zip code area), as well as on the pretest market share of ticket
sales. Second, they added multiple pretest and posttest assessments by examining
mean weekly ticket sales for 4 weeks before and 4 weeks after the treatment
started, Pretest sales trends were decreasing nearly identically in both the treat-
ment and control groups, so that maturation differences could not explain in-
creasing ticket sales. Similarly, repression to the mean was unlikely because the
treatment group sales were continwously decreasing over four consecutive pretests
and because control group ticket sales continued to decrease after treatment be-
gan. Third, Aiken and West studied treatment effects on three nonequivalent de-
pendent variables in the treatment group, discovering that the intervention in-
creased ticket sales but not sales of gas, cigarettes, or grocery items, Fourth, they
located some stores in which the treatment was removed and then repeated or was
initiated later than in other stores and found that the outcome tracked the intro-
duction, removal, and reinstatement of treatment over time whereas sales in the
matched controls remained unchanged. Nearly all these analyses suggested that
the “Ask for the Sale” intervention increased ticket sales after the program began,
making it difficult to think of an alternative explanation for the effect.
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Combining Switching Replications With a Nonequivalent
Control Group Design

Sometimes the researcher can introduce treatment to part of the original control
group, with other controls remaining untreated over this later time period. Some-
times the researcher can even reintroduce treatment a second time to some of the
original treatment group to evaluate the benefits of additional treatment, Gunn,
Iverson, and Katz (1985) did this in a study of a health education program intro-
duced into 1,071 classrooms nationwide. The design is diagrammed as follows,
with R indicating a potential use of random assignment that is a useful but not
necessary adjunct to the design:

Year 1 Year 2

NR O, X ©O, R 0O X 04

R O o,
NR O, 0, R 0. X O
R 0O 0,4

Classrooms were first divided into nonequivalent treatment and control
groups. Students in each group were tested on knowledge of health before and
after the first year of the program, Then the initial control group was divided ran-
domly in half. One half received the health education program to replicate the
treatment effect, and the other remained without instruction, In addition, a ran-
dom sample of the original treatment group received a second year of instruction
to explore the incremental benefit of additional health education. Here we see
switching replications yoked to a continuation of the original controls and to a
treatment hooster. This yoking strengthens a switching replications design, espe-
cially if the second phase of the study uses random assignment or if those receiv-
ing the booster session are identified by falling to one side of a cutoff on a meas-

ure of need for the booster session—a regression discontinuity design (see
Chapter 7).

An Untreated Control Group With a Double Pretest and
Both Independent and Dependent Samples

To evaluate community-level interventions designed to reduce cardiovascular risk
factors, both Blackburn et al. {1984} and Farquhar et al. (1990) combined a dou-
ble pretest with samples in which the outcome was measured on both independ-
ent and dependent samples. We diagram the logic of the design here, using per-
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pendicular lines between O’s to show independent samples and glossing over some
complexities in the actual designs used in these two studies.

R o0, | 0 | 05 1 0. I O
R o, | 0, 11X 05 | 0. | 0
R O, 0, 0, O Os
R 0 0, X O, O4 O

The first two rows of this diagram portray a randomized experiment with com-
munities being assigned to intervention or control and with a cross-sectional panel
survey being administered to independent samples of community housebolds at
each annual time point (however, relatively few communities were used in each
study, and so there can be no presumption here that much initial equivalence was
achieved). The two bottom rows of the diagram depict a longitudinal survey of re-
spondents who were followed over time. The major study outcomnes were annual
physiological measures of heart problems, including blood pressure and cholesterol
level. In the cross-sectional panel survey, independent random samples were
drawn, both out of concern that obtrusive annual physiological measurement
would sensitize repeatedly measured respondents to the treatment and out of de-
sire to generalize to the community at large as it spontaneously changed over time,
Because there were only three matched communities n Blackburn’s study and two
in Farquhar’s, the double pretest was used to estimate preintervention linear trends.
However, in the Blackbum study, variability berween years within cities was
greater than expected, and statistical adjustments for this were not very belpful. S0
Blackburn modified the design in midstream so that some pretest respondents were
followed up at several posttests, thus creating the longitudinal sample to comple-
ment the independent samples that continued to be drawn. The Farquhar study
was designed from scratch to include both independent and dependent samples.

The use of so many different design elements provided many ways to exam-
ine the threats to validity {Chaffee, Roser, & Flora, 1989). For example, Chaffee
et al. examined history by comparing differences between successive waves of in-
dependent samples in the control cities, and they examined attrition by compar-
ing differences between the dependent and independent treatment group samples
with differences between the corresponding control group samples. The combined
effects of testing and maturation are suggested by comparing the differences be-
tween changes over time in the dependent samples (in which testing and matura-
tion are more likely to occur) with changes in the independent samples (although
sorme maturation of the entire population might also occur in these), None of these
ways of examining threats is perfect, each providing suggestive rather than defin-
itive evidence.
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The Farquhar study is interesting for another reason that is relevant when the
unit of assignment is a large aggregare such asa community or a business, For rea-
sons of cost and logistics, it is rarely possible to have many such aggregates. In-
deed, the publication of the Farquhar study reported only two treatment and two
control communities, Cardiovascular disease decreased in the two treatment com-
munities and in one of the control communities by amounts that hardly differed.
Rut the risk appears to have increased over time in the second control community,
despite a national trend downward over the period studied. Omitting this one
community from some analyses would bave reduced the treatment-control differ-
ences to neatly zero. With so few units, there is no pretense of achieving compa-
rability berween treatment and control groups, however conscientiously commu-
nities were paired before assignment. To deal with this problem requires adding
more communities (which will often be prohibitively expensive) or combining
studies with similar trearments, In this last case, the treatments will not be identi-
cal, and other contextual and evaluation factors will surely also differ between the
studies. There is no compelling reason why there should be as many control as ex-
perimental units, so adding more control communities is sometimes inexpensive
and can increase power (Kish, 1987).

THE ELEMENTS OF DESIGN

We have shown how even the weakest quasi-experimental designs can be strength-
ened by adding thoughtfully chosen design elements that reduce the number and
plausibility of internal validity threats. Here we sumnmarize those design elements
{Table 5.2). Afrer all, quasi-experiments are nothing more than combinations of
such elements selected to suit particular circumstances of research {(Cotrin &
Cook, 1998). For convenience, we place them into four groups having to do with
(1) assignment, {2} measurement, {3) comparison groups, and {4) treatments.

Assignment

In most quasi-experiments, assignment is not controlled by the researcher. Rather,
participants self-select into conditions, or someone else makes the assignment deci-
sion, as when a physician decides who will receive surgery or a teacher or school
board decides which student or school should receive new resources. Thete is con-
siderable evidence that nonrandom assignment often (but not always) yields differ-
ent results than random assignment does (Chalmers et al., 1983; Colditz, Miller, &
Mosteller, 1988; Lipsey & Wilson, 1993; Mosteller, Gilbert, & McPeck, 1980; Wort-
man, 1992), more so when participants self-select into conditions than when others
make the selection decision (Heinsman & Shadish, 1996; Shadish, Matt, Mavarro,
& Phillips, 2000; Shadish & Ragsdale, 1996)-—so self-selection should be avoided if
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TABLE 5.2 Desigh Elements used in Constructing Experiments and Quasi-Experiments

Assignment
Random Assighment
Cutoff-Based Assignment
Other Nonrandom Assignment
Matching and Stratifying
Masking

Measurement

Posttest Observations

Single Posttests

Nonequivalent Dependent Variables

Multiple Substantive Posttests
Pretest Ohservations

Single Pretest

Retrospective Pretest |

Proxy Pretest ;

Repeated Pretasts Over Time

Pretests on Independent sarmples
Moderator Variable with Predicted interaction
Measuring Threats to Validity

Comparison Groups

single Naneguivalent Groups
Multiple Nonequivalent Groups
Cohorts
internal Versus External Controls
Constructed Contrasts
Regression Extrapolation Contrasts
Normed Contrasts
secondary Data Contrasts

Treatment

switching Replications
Reversed Treatments
Removed Treatments
Repeated Treatments

possible. Certain ponrandom assignment methods such as alternating assignment
can sometimes approximate random assignment decently well (McAweeney &
Klockars, 1998; Staines, McKendrick, Perlis, Sacks, & Deleon, 1999).
Assignment can often be controlled in other ways than by random methods.
Matching and stratifying can both increase group similarity. However, matching

requires significantly more vigilance in quasi-experiments than in randomized
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experiments, for when done with unreliable, single measures at one point in time
it can create more problems than it solves. When feasible, masking (blinding) of
investigators, participants, or other research and service staff to assignment can
be useful. It prevents two biases: (1) investigator and participant reactivity to
knowledge of the condition to which the participant has been assigned and
(2) efforts by those involved in assignment to influence results from the condi-
tion to which a participant is assigned. In general, then, not all nonrandom as-
signments are alike, and nonrandom assignments can be improved by prevent-
ing self-selection and by using other experimental controls such as matching and
masking in cases in which they are feasible.

Measurement

Researchers can improve causal inference by controlling the nature and schedul-
ing of measurements in a study. The major reason for assessing posttests after a
treatment is to eliminate ambignity about the temporal precedence of cause and
effect. This threat is most likely to occur when a measure of outcome is taken $i-
multaneously with treatment, as occurs in many correlational studies in which the
same guestionnaire is used to assess both treatment exposure levels and outcome.
It is obviously better to separate temporally the measurement of these two crucial
attributes of causal analysis, The special postrest called a noneguivalent depend-
ent variable requires posttest measurement of two plausibly related constructs
(e.g., two measures of health), onc of which (the target outcome variable) is ex-
pected to change because of the treatment, whereas the other (the nonequivalent
dependent variable) is not predicted to change because of the treatment, though it
is expected to respond to some or all of the contextually impottant internal va-
lidity threats in the same way as the target outcome (e.g., both would respond in
the same degrec to a maturational process that improves health across all health
measures). If the target outcome variable changes in response to treatment but the
nonequivalent dependent variable does not, the inference that the change is due to
the treatment is strengthened. If both change, the inference is weakened becanse
the change could have been due to the threats. The use of multiple substantive
posttests allows the researcher to examine a pattern of evidence about effects.
When this pattern is predicted based on prior knowledge about the pattern typi-
cally left by a particular cause, more confident causal inference is possible.
Adding a pretest to a design helps examine selection biases and attrition as
sources of observed effects. Adding repeated pretests of the same construct on
consecutive occasions prior to treatment helps reveal maturational trends, detect
regression artifacts, and study testing and instrumentation effects. Somctimes
when it is not possible to collect pretest information on the outcome variable, ret-
rospective pretests ask respondents to recall their pretest status; or proxy pretests
can be gathered on a variable that is correlared with the outcome. These options
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can help clarify selection and attrition biases, though more weakly than can
pretests on the outcome variable itself. Or one ¢an sometimes gather pretest in-
formation on an independent pretest sample—participants different from those in
the posttest sample but presumed to be similar to them, such as a random sample
from the same population.

A moderator variable influences the size or direction of an observed effect. It
can aid causal inference when the researcher successfully predicts an interaction
between the moderator and treatment in producing the observed effect, This con-
firmation usually allows few plausible threats to internal validity. Finally, meas-
uring threats to validity that can be anticipated ar the start of the study helps the
researcher to detect the occurrence of the threat and whether its direction mimics
the observed outcomes. Measuring the presumed selection process is one particu-
larly erucial example,

Comparison Groups

Comparison groups provide data about the counterfactual inference, that is, about
what would have happened in the absence of treatment, In quasi-experiments, the
counterfactual inference often depends on a nonequivalent comparison group de-
liberately chosen to have maximum pretest similarity to the treatment group on as
many observed characteristics as possible or on some particular feature that the re-
searcher believes will be a particularly salient threat to validity, Using thoughtfully
chosen multiple nonequivalent comparison grougs rather than just one compari-
son can expand the researcher’s ability to explore more threats to the causal infer-
ence and to triangulate toward a narrower bracket within which the effect is in-
ferred 1o lie, A particularly useful comparison is to cobort controls, to groups that
move through an institution (e.g., a school) in cycles (e.g., a new third-grade class
each year), Cohorts are thought to be more comparable vo each other {e.g., of the
same age, same peneral socioeconomic status, et¢.) than are most other nonequiv-
alent comparison groups.

Nonrandom comparisons to an internal rather than an external control group
can sometimes yield more accurate results (Aiken et al., 1998; Bell et al., 1995;
Heinsman & Shadish, 1996; Shadish & Ragsdale, 1996), Internal controls are
drawn from the same pool of participants (e.g., from students in the same school
or class or from all program applicants). External controls are drawn from
patently different pools (e.g., patients in different treatment settings) and are pre-
sumed to have less in common. Drawing the line between internal and external
controls is sometimes difficult; however, and it is clear that all these nonequiva-
lent comparison groups can yield significant biases (Stewart et al,, 1993).

Sometimes counterfactual inferences are supported from less desirable
sources, including (1) a regression extrapolation in which actual and projected
posttest scores are compared, (2) a normed comparison in which treatment group
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ecores are compared with normed samples from test manuals and the like, and
(3) a secondary data comparison in which treatment respondents are compared
with samples drawn from other studies. The usefulness of such comparisons de-
pends on the extent 0 which similarity to the treatment group can be shown, on
whether useful matching is possible, and on whether multiple comparisons can be
constructed, In the case of the contrasts listed in this paragraph, it would be rare
to discover that they adequately describe the missing counterfactual inference.

Treatment

The researcher’s ability to control the application and scheduling of treatment is
a powerful tool for facilitating a causal inference. The switching replication
method teplicates the treatment effect at a later date in a group that originally
served as a control. Better still s the use of multiple compatison groups that each
ceceive treatment at a different vime. The reversed treatment method applies a
treatment expected to reverse the outcome when compared with the expected
outcome in the treatment condition. The removed sreatment method first pres-
ents and then removes treatment to demonstrate that the pattern of cutcomes fol-
lows the pattern of treatment application; and the repeated treatments method
reintroduces the treatment after its removal, doing so as often as feasible {some-
times called the ABAB design, with A signifying treatment and B signifying treat-
ment removal). ‘

Design Elements and ldeal Quasi-Experimentatiun

Is there an ideal or best quasi-expcrimental design, one that assembles these ele-
ments optimally? The answer is “Usually not,” because the best design for a given
study depends on the particular hypotheses being probed, on the contextual rel-
evance of various threats to inference, on knowledge from prior studies about the
viability of those threats, and on what design elements are feasible to include.
Howevet, most quasi-experiments have used very few of the potentially available
quasi-cxpr:rimental design elements; and our impression is that most quasi-
experiments would have benefited by more atrention to both the threats t0 in-
ference and the design elements that might help reduce the plaunsibility of those
threats. ‘

Our advice is in the spirit of R. A. Fisher, who advised researchers to “Make
your theories elaborate” (cited in Rosenbaum, 1984, p. 41) in order to improve
causal inference from nonrandomized experiments, It is also in the spirit of Hol-
land (1989), who noted two competing principles in drawing causal inferences
from gquasi-experiments: (1) causal inference in nonrandomized studies requires
more data than in randomized studies and {2) causal inference in nonrandomized
ctudies requires ore assumptions in data analyses than in randomized studies.



APPENDIX 5.1

Holland encouraged researchers to put more emphasis on the former principle
(gathering more data) than the latter (making more assumptions), for gathering
more data is often the only way to test the assumptions necessary to make better
analyses. Adding more design elements is a way to gather more elaborate and di-
verse data in the service of improving causal inference.

CONCLUSION

Qur review in the previous two chapters has noted that the most frequently used
quasi-experimental designs typically support causal conclusions that are some-
what ambiguous. In light of this, users must be prepared to tolerate the ambigu-
ity, assume that alternative causal explanations are negligible, or use stronger de-
signs. This chapter emphasizes building stronger designs through adding design
features that reduce the plausibility of validity threats in the context under study.
In the next chapter, we continue the same theme, By themselves, interrupted time
series provide a particularly strong structure for supporting causal inferences. But
when the design features just summarized (e.g., comparison groups, nonequiva-
lent dependent variables, switching replications) are added to the interrupted time
series, the result is a quasi-experiment whose inferential yield sometimes rivals
that of the randomized experiment.

APPENDIX 5.1: IMPORTANT DEVELOPMENTS IN
ANALYZING DATA FROM DESIGNS WITH
NONEQUIVALENT GROUPS

Statisticians and economists have recently devoted substantial attention to the analy-
sis of data from designs with nonequivalent groups. Much of it is highly statistical
and beyond the scope of our focus on design. However, a chapter on quasi-experi-
mentation would be remiss if it did not introduce these developments that we hope
will serve not as alternatives to quality quasi-experimental designs but as adjuncts in
dealing with whatever biases the best possible design cannot deal with. In a sense, the
motto is “statistical adjustment only after the best possible design controls have been
used.” Winship and Motgan (1999) provide a superb review of this material.

Propensity Scores and Hidden Bias

Throughout the 20th century, statisticians have preferred randomized experi-
ments, paying less attention to quasi-experiments (Shadish & Cook, 1999), This
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preference is partly due to the inherent intractability of selection bias, for it is dif-
ficult to develop statistical models when the underlying processes are by their very
nature unknown. Recently, however, some statisticians have studied these prob-
lems with useful results (e.g., Holland, 1986; Rosenbaum, 19284, 1995a; Rubin,
1974, 1991). Much of that work is summarized by Rosenbaum (1995a); and use-
ful examples now exist in epidemiology (C. Drake 8¢ Fisher, 1925), medicine
(Connors et al., 1996; Smith, 1997; Stone et al., 1995), the evaluation of job train-
ing programs (Dehejia & Wahba, 1999), and high school education (Rosenbaum,
1986), to name a few.

A useful development is the propensity score: the predicted probability of be-
ing in the treatment (versus control) group from a logistic regression equation.®
Careful measurement of likely predictors of selection into groups will improve the
accuracy of propensity scores, The goal is to include all variables that play a role
in the selection process (including interactions and other nonlinear terms; Rosen-
baum & Rubin, 1984; Rubin & Thomas, 1996) and that are presumptively re-
lated to outcome, even if only weakly so (Rubin, 1997): “Unless a variable can be
excluded because there is a consensus that it is unrelated to outcome or is not a
proper covariate, it is advisable to include it in the propensity score model even if
it is not statistically significant” (Rubin & Thomas, 1996, p. 253). Sample size al-
lowing, some authors suggest also using as predictors any pretest variables that
differentiate between nonequivalent proups (Canner, 1984, 1991; Cochran, 1965;
Rosenbaum, 1995a; Rubin & Thomas, 1996) at a higher than usual Type I error
rate (e.g., p < .10 or p < 25}, Predictors should not be cansed by the treatment,
which usunally entails using measures collected before treatment begins. Data ten-
tatively suggest that correctly modeling the form of the regression (i.e., cotrect in-
clusion of interaction or nonlinear terms) is less important than including all the
relevant predictors of group membership (Dehejia & Wahba, 1999; C. Drake,
1993}, In cases of multiple treatments, propensity scores may be computed sepa-
rately for each pairwise comparison (Rubin, 1997).

The logistic regression reduces each participant’s set of covariates to a single
propensity score, thus making it feasible to match or stratify on what are essen-
tially multiple variables simultaneously, Standard matching can be used in which
one treatment and one control unit are paired. But Rosenbaum (1995a) shows
that such pair-matching usually will not minimize the distance between groups
within strata on the propensity score. Instead, he recommends optimal matching,
in which each subset consists of (1) a single treated participant and one or more
controls or (2) a single control participant and one or more treated participants. Op-
timal matching uses an algorithm for minimizing aggregate sample differences be-
tween treatment and control conditions on the propensity score. It allows for elim-
inating prior matches to create new ones if that procedure vields the lowest total

6. Stone et al. (1995) illustrare an alternative method for creating propensity scores using classificarion tree
algorithms rather than logistic regression.
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difference over conditions (Rosenbaum, 1995a). Bergstralh, Kosanke, and Jocobsen
(1996) provide a SAS macro for optimal matching, and Isserman and Rephann
(1995) present a social science example of its application. Many other variations on
matching algorithms are possible (e.., Dehejia & Wahba, 1999; Gu & Rosenbaum,
1993; Heckman, Ichimura, & Todd, 1997; Marsh, 1998). For example, one can
match on propensity scores while simultaneously matching on other variables, such
as gender or age (Rosenbaum, in press). There is as yet no thorough review of the
advantages and disadvantages of all these matching options.

Tf seratifying, “Cochran (1968) shows that five subclasses are often sufficient
to remove over 90% of the bias due to the subclassifying variable or covariate”
(Rosenbaum & Rubin, 1984, p, 516). So five strata are typically constructed that
contain all the experimental and control cases that fall within the same quintile on
the propensity score, That stratification is not affected by violations of linearity,
and it balances treatment and control groups in the sense that within any stratum
that is homogeneous in the propensity score, differences berween treated and con-
trol participants on the predictors will be due to chance if the propensity score
stratification worked welt. The treatment group mean is then estimated as an un-
weighted average of the five treatment group strata means, and the control group
mean is estimated similarly. Alternatively, Robins, Greenland, and Hu (1999) re-
port a method for weighting proportional to the propensity of teceiving the treat-
ment actually received that may have advantages, particularly for time-varying
treatments. The researcher should test how well stratification on propensity scores
succeeded in adjusting for differences in observed covariates by submitting each
covariate (separately) and the propensity score itself to a 2 (treatments} X 5
(strata) analysis of variance. A significant interaction suggests that the propensity
score did not adjust well for observed covariates, a situation that is more likely to
occur the more seriously discrepant the two groups are on pretest covariates.
$ometimes this problem can be ameliorated by adding nonlinear terms to the
propensity s¢ore equation,

Finally, the propensity score can be used as a covariate in ANCOVA. When the
usual ANCOVA assumptions are met and the model is precisely correct (e.g., it
models curvilinearity correctly), covariance adjustment is more efficient than
matching or stratifying, Howeves, if the model is not substantially correct, covari-
ance adjustments may fail to reduce overt bias or may even increase it (Rosenbaum,
in press). Some authors doubt how well covariance models can model the correct
functional form {e.g., H. White, 1981; Winship & Morgan, 1999), Dehejia and
Wahba (1999) found that matching performed better than covariance compared
with a randomized experiment benchmark despite the addition of some nonlinear
terms to the covatiance model. Fortunately, matching or stratifying on propensity
scores can be used in combination with a subsequent covariance analysis, the
result being more efficient and robust than when either is used alone (Rosenbaum,
1998, in press). This ANCOVA may include predictors of group membership that
were used to compute the propensity score (Rubin & Thomas, 2000; Stone et al.,
1995). Although the latter may seem unusual, a predictor may account for both
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variability in group membership and variability in outcome, To the extent that
those sources of variability are orthogonal (mostly an empirical question in any
given case), including the predictor in the final outcome equation can increase the
efficiency and decrease the bias of the fina! estimates.

Four caveats temper our excitement about the potential of propensity scores.
First, they work best with larger samples (Rubin, 1997}, but many quasi-experiments
have small samples. Second, researchers should inspect the overlap between condi-
tions on propensity scores, When overlap is exirernely limited, it does not allow iden-
tification of many strata or matches with members from the treatments under con-
trast, which can severely limit sample size, generalizability, and accuracy of any
causal conclusions. Third, methods for computing propensity scores when predictors
are missing are just now being explored {e.g., D’ Agostino 8 Rubin, 2000); this issue
is crucial in practice, as missing data are common. Fourth, the method assumes that
no further unknown confounding variable exists that predicts the propensity to be in
condition and that is correlated with outcome. This is a strong assumption. Random
assignment balances treatments on both observed and unobserved covariates on ex-
pectation; but propensity score adjustments balance treatments only on observed co-
variates, leaving hidden bias due to unobserved covariates. It helps reduce hidden
bias if propensity scores are constructed from as many predictors of gronp member-
ship and outcome as is contextually feasible. However, it is rarely possible to know
all such variables; and cost or logistical constraints often prevent researchers from
measuring those that are suspected to be operating. So hidden bias may remain in
quasi-experimental estimates of treatment effects even when the best propensity
score analysis is used. :

A second relevant development in statistics derives directly from the likeli-
hood of this hidden bias. It is the development of sensitivity analyses to assess
whether hidden biases of various sizes would change the results of the study. Such
analyses explore how much hidden bias would need to be present to change study
outcomes, commeonly from a significant observed difference between groups to a
finding of no difference or vice versa. Rosenbaum (1991a, 1991b) provides a sim-
ple example of the computations (see also Gasrwirth, 1992; Gastwirth, Krieger, &
Rosenbaum, 1994; S. Greenhouse, 1932; Marcus, 1997b; Psaty et al,, 1999;
Rosenbaum, 1986, 1987, 1988, 1989, 1991a, 1991b, 1993, 1995a, 1995bh,
1999b; Rosenbaum & Krieger, 1990). Similar research has emerged recently in the
econometrics literature covered in the next section {Manski, 1990; Manski & Na-
gin, 1298).

The sensitivity analysis outlined by Rosenbaum {19%91a, 1991h, 1995a} works
as follows. In a randomized experiment using simple random assignment, the odds
of being assigned to treatment or control conditions are even, sa the probability of
heing assigned to treatment is .50. In this case, the significance level (i.e., the Type T
error rate) yielded by the statistical test for the difference between the two groups is
accurate. In nonrandomized experiments, however, these probabilities may depart
from .50; for example, males may be more likely than females to be admitted to a
job training intervention. As these probabilities depart from 50/50, the significance
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level yielded by a statistical test of the difference between groups can become less
accurate, assuming that the omirted variaple causing the bias is related to outcome.
Unfortunately, without knowing the hidden biases that cause this change in assign-
ment probabilities, we cannot know if the significance levels are too low or too high.
A sensitivity analysis identifies how far the lowest and highest possible significance
levels will depart from what would have been yielded by a randomized experiment.
It does this separately for different assumptions about the degree to which the prob-
abilities of being assigned to conditions depart from .50. This analysis can provide
important diagnostic information about the degree of assignment bias on a variable
related to outcome that would change the significance of the result,

Rosenbaum (1991a) provides an example in which the observed significance
level in a quasi-experiment is p = 0057, suggesting that treatment is effective,
Sensitivity analysis on the raw study data showed that possible significance ranges
from a minimum of .0004 to a maximum of .0367 when the probability of being
assigned to conditions ranges from .4 to .6. Both this minimum and maximum
would support the conclusion that treatment is effective, However, that narrow
assignment probability range (40/60) reflects relatively little departure from the
randomized experiment due to hidden bias. If the probability of being assigned 1o
conditions ranges from .25 to .75, then the minimum significance level is <.0001
but the maximum is .2420, the latter sugpesting no significant effect, The proba-
bilities suggest that if unmeasured variables exist that affecr assignment to condi-
tions in this study so that some people are mote likely than others to be assigned
to treatment by a factor of 3:1 (i.e., .75 to .25}, then hidden bias may be creating
a falsc treatment effect where none actually exists (or it may be masking even
larger treatment cffects).

The pattern of minimum and maximum significance levels and the disparities
in assignment probabilities required to produce them will vary over studies. Some
studies will seem invulnerable to all but the most extreme assumptions about hid-
den bias, and others will seem vulnerable to nearly any assumptions. However,
sensitivity analyses do not actually indicate whether bias is present, only whether
a study is vulnerable to biases of different degrees. Rosenbaum (1991a) describes
one study that seemed invulnerable to hidden biases that caused assignment prob-
abilities ranging from .09 to .91; but later research showed that an even larger bias
probably existed in that study. The actual detection of hidden bias in a study is not
easily accomplished; but sometimes the design elements we have outlined in this
chapter and the previous one, such as use of nonequivalent dependent variables
or of control groups that have known performance on some unobserved covari-
ate, are useful. For example, Dehejia and Wahba (1999) suggest that when
propensity score adjustments on multiple nonequivalent comparison groups yield
highly variable results, the possible presence of hidden bias is suggested.

When sensitivity analysis is combined with matching on propensity scores,
these new statistical developments provide an important new analytic tool in the
arsenal of quasi-experimentation, We hope they are used more widely to help us
gain more practical experience about their feasibility and aceuracy.
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Selection Bias Modeling

Given that propensity score analysis cannot adjust for hidden bias and that sensi-
tivity analyses cannot indicate whether such biases are present, it would be desir-
able to have a method that remedies these weaknesses. For the past 25 years, a
number of economists, notably Heckman (e.g., Barnow, Cain, & Goldberger,
1980; Cronbach, Rogosa, Floden, & Price, 1977; Director, 1979; W, Greene,
1985, 1999; Heckman, 1979; Heckman & Hotz, 1989a, 1989b; Heckman, Hotz,
& Dabos, 1987; Heckman & Robb, 1985, 1986a”; Stromsdorfer & Farkas,
1980), have developed procedures they hoped would adjust for selection biases
between nonequivalent groups to obtain an unbiased estimate of treatment effects.
These methods are statistically complex and are not always easily implemented by
those without advanced statistical training. They comprise a family of models that
make different assumptions abour selection, Accessible overviews are provided by
Achen (1986), Foster and McLanahan (1996), Moffirt (1991), Newhouse and
McClellan (1998), Rindskopf {1986), Winship and Mare (1992), and especially
Winship and Morgan (1999).

A simple selection bias model might use two equations, a selection equation
and an outcome equation. As with propensity score models, the selection equation
predicts actual group membership from a set of presumed determinants of selec-
tion into conditions, yielding a predicted group membership score. This score may
be substituted for the treatment dummy variable in the outcome equation or added
to that equation in addition to the dummy variable. If the selection equation pre-
dicts group membership nearly perfectly, and if other assumptions, such as not-
mality of observations, are met, then in principle the coefficient associated with the
predicted dummy trearment variable in the effect estimation equation can yield an
unbiased estimate of the treatment effect. Unlike propensity score methods, selec-
tion bias models can allow for correlation of errors in the selection equation and
the outcome equation. This correlation is gained at a cost of assuming the nature
of the bivariate relationship between the errors, usually as bivariate normal.

These models are closely related to regression discontinuity designs that
achieve an unbiased estimate of treatment effects through full knowledge of the se-
lection model by which participants were assigned to conditions, entering that
model (i.e., the cutoff variable) directly into the effects estimation model. Regres-
sion discontinuity does not require a selection equation because the design forces
perfect prediction of selection based on the cutoff score, so the residual of predic-
tion into conditions is zero. In selection bias models, by analogy, if the residual of
the selection equation departs much from zero (which is to say that predicted group
membership does not march actual group membership well), then the selection bias
model may fail to yield unbiased estimates of treatment effects. This primarily hap-

7. Wainer (1986, pp. 5762, 108-113) ceprints a spirited discussion by John Tukey, John Hartigan, and James
Ileckman of both the 1985 and 1986 versions of the Heekman and Robb papers.
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pens if a variable that would improve prediction of group mernbership and that is
related to outcome is omitted from the selection equation, This omission causes a
correlation between the error terms and predictors in the selection and effect esti-
mation equations, which will cause biased estimation of effects, As with regression
discontinuity, the functional form of the selection equation must be correctly spec-
ified; for instance, if nonlinear or interaction terms that affect group membership
are omitted, the effect estimation equation may yield biased estimates.

Selection bias models have been widely studied, praised, and criticized.® On
the positive side, they address the very important question of taking hidden bias
into account rather than just adjusting for observed covariates. And some empir-
ical data can be interpreted positively (Heckman & Hotz, 198%a; Heckman, Hotg,
& Dabos, 1987; Heckman & Todd, 1996; Reynolds & Temple, 1995), encour-
aging further work to develop these models (Moffitt, 1989). Less optimistically,
sensitivity to violations of assumptions seems high, and many statisticians are
skeptical about these models (e.g., Holland, 1989; Little, 1985; Wainer, 1986).
Further, some studies suggest that these models do not well-approximate results
from randomized experiments. For example, LaLonde and Maynard (1987) com-
pared results from a randomized experiment with results from a selection bias
analysis of the same data vsing a quasi-experimental control and found that the
two answers did not match well. The presumption is that the randomized expeti-
ment 1s correct, Related studies have not yielded promising results (Fraker &
Maynard, 1986, 1987; Friedlander & Robins, 1995; LaLonde, 1986; Murnane,
Newstead, & Olsen, 1985; Stolzenberg & Relles, 1990; Virdin, 1993).° Thus even
some economists have been led to prefer randomized experiments to nonrandom-
ized experiments that usc selection bias models {Ashenfelter & Card, 1985;
Barnow, 1987; Burtless, 1995; Hollister & Hill, 1995). Advocates respond that
some of these studies used data that did not meet certain tests for propet applica-
tion of the models. For example, Heckman and Hotz ( 1989a, 1989b; Heckman,
Hortz, & Dabos, 1987) suggest that a valid selection bias model should find no
pretest difference between participants and controls and no posttest difference be-
tween randomized and nonrandomized controls (of course, if one has randomized
controls, the selection bias estimate is of less interest), But even when those tests
are passed, concern about the accuracy of resulting estimates can remain {Fricd-
lander & Robins, 1995).

Work to develop better selection bias models continues (Heckman & Roselius,
1994, 1995; Heckman & Todd, 1996). Bell et al. (1995) note that several events in
the 1970s encouraged use of external control groups, like those drawn from na-
tiohal survey archives in selection bias models, and discouraged use of internal con-
trols. Today, there is renewed interest in internal control groups, on the assump-
tion that they may be more similar to the trearment group a priori than are exrernal

8. For a novel view of this debare from sociology of science, see Breslay {1957),

9. Dehejin and Wahba (1999} reanalyzed the Lalonde (1986} data using propensity score analysis and obrainad
point estimates that were much closcr 1o those from the benchmark randorized experiment,
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controls. This point has been widely suggested in the quasi-experimental literature
for decades (e.g., Campbell & Stanley, 1963) but not appreciated in selection bias
modeling until recently (e.g., Heckman & Roselius, 1994: Heckman et al., 1997).
Friedlander and Robins {1995), for example, found that selection bias models of
welfare experiments more accurately approximated estimates from randomized ex-
periments when the nonrandomized controls were selected from within the same
state as the program recipients rather than from other states. Bell et al, (1995) in-
vestigate various internal control groups formed from program applicants who
withdrew, were screened out,’® or did not show for treatment, with encouraging
results,

Also, these models would probably work better if they used predictors that
were selected to reflect theory and research about variables that affect selection
into treatment, a procedure that requires studying the nature of selection bias as
a phenomenon in its own right {(e.g., Anderman et al, 1995). For example,
Reynolds and Temple (1995) obtained effect size estimates from selection bias
models that closely resembled those from randomized experiments on the effects
of participation in a preschool program, The rules for eligibility to participate in
the program were fairly clear, and the authors were able to predict participation
fairly accurately. However, when less is known about participation, ¢ven authors
who have made extensive efforts to select comparable controls and measure per-
tinent selection predictors have found results that made them question if the se-
lection bias model worked (Grossman & Tierney, 1993).

Heckman (Heckman, Lalonde, & Smith, 1999; Heckman & Roselius, 1994,
1995; Heckman & Todd, 1996) has incorporated these lessons into various re-
vised models that vest the effects of employment and training programs under the
Job Training Partnership Act (JTPA). The coritext is the National JTPA Experi-
ment, commissioned in 1986 by the U.8. Department of Labor. It included pro-
gram participants, a randomized control group, and a nonrandomized compari-
son group of people who were eligible for JTPA but did apply, Heckman tested
several semiparametric selection bias estimators that do not require such strong
assumptions, and they performed better than previous parametric models had.!!
However, making fewer assumptions usually results in weaker inferences, and the
hard question of which assumptions are appropriate still remains to be solved in
each study, In any case, the best performing models in Heckman and Todd used
matching on a modified version of the propensity scores described in the previous

10, Bell et al. (19235) refer to this group as a reyression discontinuity control group, Close examinarion of the
procedures used ta ¢reate this ¢ontrol make thar unlikely, for two reasons. First, assignment does not seem to have
been tmade solely on the basis of a quantitative curoff. Second, staff who were making program selection: decisions
may have created the paricipant’s seore on the selection variable as a result of their judgments about who should
gee erearment racher than by firse measuring the variable and then determining eligibility. Thus both the score and
the cutoff may have been the effecr of assignment rather than its cause,

11. All of these rests were conducted with knowledge of the outcome of the randomized experiment, so they leave
doubt as to how well they would have performed under condirions in which the researcher does et know the
coreeer answer—which ix, afier all, the likely coneext of application.
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section. Heckman and Todd (1996) note that these matching methods “perform
best when (1) comparison group members come from the same local labor mar-
kets as participants, (2) they answer the same survey questionnaires, and (3) when
data on key determinants of program participation is (sic) available” (p. 60). Per-
haps such results indicate the beginnings of a convergence among the statistical,
econometric, and quasi-experimental design literatures in understanding of how
to get better effect estimates from quasi-experiments.

Another indicator of convergence comes from Manski and his colleagues
(e.g., Manski, 1990; Manski & Nagin, 1928; Manski, Sandefur, McLanahan, &
Powers, 1992), who have explored nonparametric methods for placing bounds on
treatment effects under conditions of selection bias, similar to the sensitivity
analysis tradition. These methods do not make the strict assumptions of the para-
metric methods of Heckman. They result in a series of treatment estimate bounds
that vary depending on the assumptions made, But the estimates that require the
fewest assumptions also sacrifice power, so the bounds may be unacceptably wide;
and point estimates of treatment effects can be attained only by making stronger
assumptions about the process generating treatment assignment and outcome,
that is, if one or more plausible selection models can be identified. Rosenbaum
{1995h}) suggests that Manski’s bounds are analogous to the limit of a sensitivity
analysis inn which the key index of potential bias in the sensitivity analysis (I') ap-
proaches o; and he agrees that the bounds are conservative but that they contain
some information. Copas and Li (1997) discuss the relationship between selection
models and sensitivity analyses, arguing that selection models are so sensitive to
assurnptions that they should be used as sensitvity analyses by varying those as-
sumptions deliberately rather than being used to estimate single treatment pa-
rameters—a point of view with which Heckman and others have expressed sym-
pathy (e.g., Heckman & Hotz, 1986; Winship & Mare, 1992). All agree:
sensitivity analyses are crucial in nonrandomized experiments.

Latent Variable Structural Equation Modeling

The work of Karl Joreskog and his colleagues on structural equation modeling
(e.g., Joreskog & Sorbom, 1988, 1993) and the similar but more user-friendly
work by Peter Bentler (e.g., Bentler, 1993, 1995) have led to widespread use of so-
called “causal modeling™ techniques. When these techniques were applied to data
from quasi-experiments, the hope was to make causal inferences more accurate by
adjusting for predictors of outcome that might be correlated with receipt of trear-
ment and by adjusting for unreliability of measorement in predicrors. If these two
goals could be accomplished, an unbiased estimate of treaument effect could be ob-
tained. In fact, adjustment for measurement error is feasible using latent variable
models {see Chapter 12). Doing so requires using multiple observed measures of a
construct thart are, in essence, factor analyzed to yield latent variables shorn of ran-
dom measurement error (multiple measurement can take place on a subsample to
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save costs; Allison & Hauser, 1991). Those latent variables can be used to mode]
treatment outcome and may improve estimation of treatment effects. For instance,
several reanalyses of the original Head Start data (Cicirelli & Associates, 1969)
have been done with latent variables, all resulting in estimates of effects that are
thought to be better than those the original analysis yielded (Bentler & Woodward,
1978; Magidson, 1977, 1978, 2000; Reynolds & Temple, 1995; Rindskopf, 1981),
However, the other goal of these models, to adjust cutcome for variables cor-
related with treatment assignment and outcome, is problematic because it i rare
in the social sciences to have sufficient knowledge of all the treatment-correlated
predictors of outcome, The almost inevitable failure to include some such predic-
tors leaves hidden bias and inaccurate effect estimates. Moteover, it is not enough
that the model include all the predictors: it must correctly specify their relation-
ship to each other and to outcome, including nonlinear and interaction terms, cor-
rect modeling of mediated versus direct relationships, and correct sequencing of
lagged relationships. Reichardt and Golloh (1986) provide a readable introduc-
tion to the issues; Bollen (1989) has a detailed one: and Bentler and Chou (1988)
give practical tips for the more productive use of these models. Ultimately, all
agree that these causal models are only as good as the design underlying the data
that go into them—even the developers of LISREL, who make clear that their pro-
gram estimates causal parameters presumed to be true as opposed to testing
whether the relationships themselves are causal (Joreskog & Sorbom, 1990).
The literature on structural equation modeling has developed largely inde-
pendently of the literatures on selection bias modeling and propensity scores, In
patt, this is an accident of the different disciplines in which these developments
first occurred; and in part it is because the methods arrempt different adjustments,
with structural equation models adjusting for predictors of outcome but with se-
lection bias models and propensity scores adjusting for predictors of treatment se-
lection. Yet Winship and Morgan (1999) make clear that there is a close relation-
ship among all these methods (see also Pearl, 2000; Spirtes, Glymour, & Scheines,
2000). It is unclear whether such efforts at integrating these topics will be suc-
cessful without making the same kinds of assumptions that have so far stymied
prior analyses. But it is also clear that the attention being paid to causal inference
is increasing across a wide array of disciplines, which at a minimum bodes well
for further integration of this disparate literature.




